search results matching tag: chernobyl

» channel: learn

go advanced with your query
Search took 0.000 seconds

    Videos (61)     Sift Talk (3)     Blogs (12)     Comments (152)   

Intelligent cow knows how to use a hand pump to draw water

poolcleaner says...

Red queen effect: Parasitic humans feed off of the cow, steals the natural flowing water and installs human-centric water holes. In competition with the human parasite the cow is forced to learn to use the water pump. And thus the arms race between cow and human.

Who will win?

My money is that humans destroy themselves and cow survives, finally free of it's parasitic relationship with the upright mammals. They then go on to evolve into upright cow people. Only to encounter the humans again.

They then join with the radioactive green humans (nuclear fallout survivors) and zombie humans (the ones that didn't survive the fallout but were taken over by parasites of their own) to kill the humans, many of whom are dwarves and really small midgets.

Some hippies that bonded with trees are found to have survived, each with their own vision of what it is to be a tree hugger. Some of them join the humans (with their now dominant midget genes) and some of them join the green humans and cow people.

Along the way we discover that in China pandas have evolved into panda people and all along there were werewolves and shit. Including dimensions made entirely of fire with slimes that thrive off of radiation, only to become what is perceived as fire elementals and H.P. Lovecraft's things were real too. Oh and the entire pantheon of all people from all of time.

Society rebuilds itself but war never changes.

This Pizza Is MiiiiiiiiinnnnnnE!

skinnydaddy1 says...

Cat, "Put me down and leave me alone. Or what I do to your stuff later will make Chernobyl and Fukushima look like minor clean ups. If you think I'm bluffing, I've already had the topping off the pizza so I'm fully loaded."

"Tell Ya What Guys..........Let's Use A RAMP Instead!!"

10 Interesting Facts About Chernobyl

Payback says...

Just in general terms, I'm one of those non-nuclear-physicists who was under the (mistaken) belief that fusion and fission reactions were different from each other. One being explosive, the other being incredibly hot. I had thought reactors were fissile, and Chernobyl was a massive steam explosion, and incapable of blowing up like a nu-cu-lur bomb. Instead, melting down and causing the "China Syndrome"

Finding out both fission AND fusion can "go Hiroshima" gives me pause when considering nuclear-electric power..

calvados said:

Link?

RFlagg (Member Profile)

10 Interesting Facts About Chernobyl

Divers Going into Chernobyl to Prevent Bigger Disaster

10 Interesting Facts About Chernobyl

Seconds From Disaster : Meltdown at Chernobyl

GeeSussFreeK says...

@radx No problem on the short comment, I do the exact same thing

I find your question hard to address directly because it is a series of things I find kind of complexly contradictory. IE, market forces causing undesirable things, and the lack of market forces because of centralization causing undesirable things. Not to say you are believing in contradictions, but rather it is a complex set of issues that have to be addressed, In that, I was thinking all day how to address these, and decided on an a round about way, talking about neither, but rather the history and evolution as to why it is viewed the way you see it, and if those things are necessarily bad. This might be a bit long in the tooth, and I apologize up front for that.

Firstly, reactors are the second invention of nuclear. While a reactor type creation were the first demonstration of fission by humans (turns out there are natural fission reactors: Oklo in Gabon, Africa ), the first objective was, of course, weapons. Most of the early tech that was researched was aimed at "how to make a bomb, and fast". As a result, after the war was all said and done, those pieces of technology could most quickly be transitioned to reactor tech, even if more qualified pieces of technology were better suited. As a result, nearly all of Americas 104 (or so) reactors are based on light water pressure vessels, the result of mostly Admiral Rickover's decision to use them in the nuclear navy. This technological lock in made the big players bigger in the nuclear field, as they didn't have to do any heavy lifting on R&D, just sell lucrative fuel contracts.

This had some very toxic effects on the overall development of reactor technology. As a result of this lock-in, the NRC is predisposed to only approving technology the resembles 50 year old reactor technology. Most of the fleet is very old, and all might as well be called Rickover Reactors. Reactors which use solid fuel rods, control rods, water under pressure, ect, are approved; even though there are some other very good candidates for reactor R&D and deployment, it simply is beyond the NRCs desire to make those kinds of changes. These barriers to entry can't be understated, only the very rich could ever afford to attempt to approve a new reactor technology, like mutli-billionaire, and still might not get approved it it smells funny (thorium, what the hell is thorium!)! The result is current reactors use mostly the same innards but have larger requirements. Those requirements also change without notice and they are required to comply with more hast than any industry. So if you built a reactor to code, and the wire mesh standards changed mid construction, you have to comply, so tear down the wall and start over unless you can figure out some way to comply. This has had a multiplication effect on costs and construction times. So many times, complications can arise not because it was "over engineered", but that they have had to go super ad-hawk to make it all work due to changes mid construction. Frankly, it is pretty amazing what they have done with reactor technology to stretch it out this long. Even with the setbacks you mention, these rube goldbergian devices still manage to compete with coal in terms of its cost per Kwh, and blow away things like solar and wind on the carbon free front.

As to reactor size LWRs had to be big in the day because of various reasons, mostly licencing. Currently, there are no real ways to do small reactors because all licencing and regulatory framework assumes it is a 1GW power station. All the huge fees and regulatory framework established by these well engineered at the time, but now ancient marvels. So you need an evacuation plan that is X miles wide ( I think it is 10), even if your reactor is fractionally as large. In other words, there is nothing technically keeping reactors large. I actually would like to see them go more modular, self regulating, and at the point of need. This would simplify transmission greatly and build in a redundancy into the system. It would also potentially open up a huge market to a variety of different small, modular reactors. Currently, though, this is a pipe dream...but a dream well worth having and pushing for.

Also, reactors in the west are pretty safe, if you look at deaths per KWH, even figuring in the worst estimates of Chernobyl, nuclear is one of the best (Chernobyl isn't a western reactor). Even so, safety ratcheting in nuclear safety happens all the time, driving costs and complexity on very old systems up and up with only nominal gains. For instance, there are no computer control systems in a reactor. Each and every gauge is a specific type that is mandated by NRC edict or similar ones abroad (usually very archaic) . This creates a potential for counterfeiter parts and other actions considered foul by many. These edicts do little for safety, most safety comes from proper reactor design, and skillful operation of the plant managers. With plants so expensive, and general costs of power still very competitive, Managers would never want to damage the money output of nuclear reactors. They would very much like to make plant operations a combination of safe, smooth, and affordable. When one of those edges out the other, it tends to find abuses in the real world. If something gets to needlessly costly, managers start looking around for alternatives. Like the DHS, much of nuclear safety is nuclear safety theater...so to a certain extent, some of the abuses don't account for any real significant increase in risk. This isn't always the case, but it has to be evaluated case by case, and for the layperson, this isn't usually something that will be done.

This combination of unwillingness to invest in new reactor technology, higher demands from reactors in general, and a single minded focus on safety, (several NRC chairmen have been decidedly anti-nuclear, that is like having the internet czar hate broadband) have stilted true growth in nuclear technology. For instance, cars are not 100% safe. It is likely you will know someone that will die in a car wreak in the course of your life. This, however, doesn't cause cars to escalate that drastically in safety features or costs to implement features to drop the death rate to 0. Even though in the US, 10s of thousands die each year in cars, you will not see well meaning people call for arresting foam injection or titanium platted unobtanium body frames, mainly because safety isn't the only point of a car. A car, or a plane, or anything really, has a complicated set of benefits and defects that we have to make hard choices on...choices that don't necessarily have a correct answer. There is a benefit curve where excessive costs don't actually improve safety that much more. If everyone in the USA had to spend 10K more on a car for form injection systems that saved 100 lives in the course of a year, is that worth it? I don't have an answer there as a matter of fact, only opinion. And as the same matter of opinion on reactors, most of their cost, complication, and centralization have to do with the special way in which we treat reactors, not the technology itself. If there was a better regulatory framework, you would see (as we kind of are slowly in the industry despite these things) cheaper, easier to fabricate reactors which are safer by default. Designs that start on a fresh sheet of paper, with the latest and greatest in computer modeling (most current reactors were designed before computer simulations on the internals or externals was even a thing) and materials science. I am routing for the molten salt, thorium reactors, but there are a bunch of other generation4 reactors that are just begging to be built.

Right now, getting the NRC to approve a new reactor design takes millions of dollars, ensuring the big boy will stay around for awhile longer yet. And the regularly framework also ensures whatever reactor gets built, it is big, and that it will use solid fuel, and water coolant, and specific dials and gauges...ect. It would be like the FCC saying the exact innards of what a cellphone should be, it would be kind of maddening to cellphone manufacturers..and you most likely wouldn't have an iPhone in the way we have it today. NRC needs to change for any of the problems you mentioned to be resolved. That is a big obstacle, I am not going to lie, it is unlikely to change anytime soon. But I think the promise of carbon free energy with reliable base-load abilities can't be ignored in this green minded future we want to create.

Any rate, thanks for your feedback, hopefully, that wasn't overkill

CGPGrey: What If the Presidential Election is a Tie?

MilkmanDan says...

Any sense that the electoral college ever made is long since dead. There are some issues where it makes sense to have area / statehood distinctions hold more sway than straight-up popular vote -- that is what the Senate is for. However, the electoral college system is just laughably (or tragically, depending on how cynical you are) messed up.

Ditch the electoral college, add term limits for Senators and Reps., and maybe our US government could go from a "Chernobyl to a mere Three-Mile Island".

Ted Koppel: Fox News 'Bad for America'

Amphibious Water Scooter

johncusick2 says...

well i sail a dinghy and yacht on the thames. its a lot cleaner than it ever used to be. i wouldnt dring the water though iv had a few mouthfuls when i capsized on the ginghy and im still here, i have been to chernobyl too now the water there i wouldnt drink

Very Strange Dancing Girl.

ReverendTed (Member Profile)

GeeSussFreeK says...

Safe nuclear refers to many different new gen4 reactor units that rely on passive safety instead of engineered safety. The real difference comes with a slight bit of understanding of how nuclear tech works now, and why that isn't optimal.

Let us first consider this, even with current nuclear technology, the amount of people that have died as a direct and indirect result of nuclear is very low per unit energy produced. The only rival is big hydro, even wind and solar have a great deal of risk compared to nuclear as we do it and have done it for years. The main difference is when a nuclear plant fails, everyone hears about it...but when a oil pipeline explodes and kills dozens, or solar panel installers fall off a roof or get electrocuted and dies...it just isn't as interesting.

Pound per pound nuclear is already statistically very safe, but that isn't really what we are talking about, we are talking about what makes them more unsafe compared to new nuclear techs. Well, that has to do with how normal nukes work. So, firstly, normal reactor tech uses solid fuel rods. It isn't a "metal" either, it is uranium dioxide, has the same physical characteristics as ceramic pots you buy in a store. When the fuel fissions, the uranium is transmuted into other, lighter, elements some of which are gases. Over time, these non-fissile elements damage the fuel rod to the point where it can no longer sustain fission and need to be replaced. At this point, they have only burned about 4% of the uranium content, but they are all "used up". So while there are some highly radioactive fission products contained in the fuel rods, the vast majority is just normal uranium, and that isn't very radioactive (you could eat it and not really suffer any radiation effects, now chemical toxicity is a different matter). The vast majority of nuclear waste, as a result of this way of burning uranium, generates huge volumes of waste products that aren't really waste products, just normal uranium.

But this isn't what makes light water reactors unsafe compared to other designs. It is all about the water. Normal reactors use water to both cool the core, extract the heat, and moderate the neutrons to sustain the fission reaction. Water boils at 100c which is far to low a temperature to run a thermal reactor on, you need much higher temps to get power. As a result, nuclear reactors use highly pressurized water to keep it liquid. The pressure is an amazingly high 2200psi or so! This is where the real problem comes in. If pressure is lost catastrophically, the chance to release radioactivity into the environment increases. This is further complicated by the lack of water then cooling the core. Without water, the fission chain reaction that generates the main source of heat in the reactor shuts down, however, the radioactive fission products contained in the fuel rods are very unstable and generate lots of heat. So much heat over time, they end up causing the rods to melt if they aren't supplied with water. This is the "melt down" you always hear about. If you start then spraying water on them after they melt down, it caries away some of those highly radioactive fission products with the steam. This is what happened in Chernobyl, there was also a human element that overdid all their safety equipment, but that just goes to show you the worst case.

The same thing didn't happen in Fukushima. What happened in Fukushima is that coolant was lost to the core and they started to melt down. The tubes which contain the uranium are made from zirconium. At high temps, water and zirconium react to form hydrogen gas. Now modern reactor buildings are designed to trap gases, usually steam, in the event of a reactor breach. In the case of hydrogen, that gas builds up till a spark of some kind happens and causes an explosion. These are the explosions that occurred at Fukushima. Both of the major failures and dangers of current reactors deal with the high pressure water; but water isn't needed to make a reactor run, just this type of reactor.

The fact that reactors have radioactive materials in them isn't really unsafe itself. What is unsafe is reactor designs that create a pressure to push that radioactivity into other areas. A electroplating plant, for example, uses concentrated acids along with high voltage electricity in their fabrication processes. It "sounds" dangerous, and it is in a certain sense, but it is a manageable danger that will most likely only have very localized effects in the event of a catastrophic event. This is due mainly to the fact that there are no forces driving those toxic chemical elements into the surrounding areas...they are just acid baths. The same goes for nuclear materials, they aren't more or less dangerus than gasoline (gas go boom!), if handled properly.

I think one of the best reactor designs in terms of both safety and efficiency are the molten salt reactors. They don't use water as a coolant, and as a result operate at normal preasures. The fuel and coolant is a liquid lithium, fluoride, and beryllium salt instead of water, and the initial fuel is thorium instead of uranium. Since it is a liquid instead of a solid, you can do all sorts of neat things with it, most notably, in case of an emergency, you can just dump all the fuel into a storage tank that is passively cooled then pump it back to the reactor once the issue is resolved. It is a safety feature that doesn't require much engineering, you are just using the ever constant force of gravity. This is what is known as passive safety, it isn't something you have to do, it is something that happens automatically. So in many cases, what they designed is a freeze plug that is being cooled. If that fails for any reason, and you desire a shutdown, the freeze plug melts and the entire contents of the reactor are drained into the tanks and fission stops (fission needs a certain geometry to happen).

So while the reactor will still be as dangerous as any other industrial machine would be...like a blast furnace, it wouldn't pose any threat to the surrounding area. This is boosted by the fact that even if you lost containment AND you had a ruptured emergency storage tank, these liquid salts solidify at temps below 400c, so while they are liquid in the reactor, they quickly solidify outside of it. And another great benefit is they are remarkably stable. Air and water don't really leach anything from them, fluoride and lithium are just so happy binding with things, they don't let go!

The fuel burn up is also really great. You burn up 90% of what you put in, and if you try hard, you can burn up to 99%. So, comparing them to "clean coal" doesn't really give new reactor tech its fair shake. The tech we use was actually sort of denounced by the person who made them, Alvin Weinberg, and he advocated the molten salt reactor instead. I could babble on about this for ages, but I think Kirk Sorensen explains that better than I could...hell most likely the bulk of what I said is said better by him



http://www.youtube.com/watch?v=N2vzotsvvkw

But the real question is why. Why use nuclear and not solar, for instance?

http://en.wikipedia.org/wiki/Energy_density

This is the answer. The power of the atom is a MILLION times more dense that fossil fuels...a million! It is a number that is beyond what we can normal grasp as people. Right now, current reactors harness less that 1% of that power because of their reactor design and fuel choice.

And unfortunately, renewables just cost to darn much for how much energy they contribute. In that, they also use WAY more resources to make per unit energy produced. So wind, for example, uses 10x more steal per unit energy contributed than other technologies. It is because renewables is more like energy farming.

http://videosift.com/video/TEDxWarwick-Physics-Constrain-Sustainable-Energy-Options


This is a really great video on that maths behind what makes renewables less than attractive for many countries. But to rap it up, finally, the real benefit is that cheap, clean power is what helps makes nations great. There is an inexorable link with access to energy and financial well being. Poor nations burn coal to try and bridge that gap, but that has a huge health toll. Renewables are way to costly for them per unit energy, they really need other answers. New nuclear could be just that, because it can be made nearly completely safe, very cheap to operate, and easier to manufacture (this means very cheap compared to today's reactors as they are basically huge pressure vessels). If you watch a couple of videos from Kirk and have more questions or problems, let me know, as you can see, I love talking about this stuff Sorry if I gabbed your ear off, but this is the stuff I am going back to school for because I do believe it will change the world. It is the closest thing to free energy we are going to get in the next 20 years.

In reply to this comment by ReverendTed:
Just stumbled onto your profile page and noticed an exchange you had with dag a few months back.
What constitutes "safe nuclear"? Is that a specific type or category of nuclear power?
Without context (which I'm sure I could obtain elsewise with a simple Google search, but I'd rather just ask), it sounds like "clean coal".

Reactors Back Online in Japan~June 2012

GeeSussFreeK says...

>> ^RadHazG:

Something tells me that most of those protesters (and most of the ones against restarting the reactors) are probably NOT the ones having to deal with the extreme power shortages the PM was talking about. It's very easy to be against something when it doesn't actually affect you. Not to mention most of them were probably perfectly ok with the reactors for all the years they were providing them with safe cheap energy. It took a ridiculously huge earthquake and several other factors to make things that bad for the reactors, it not nearly as dangerous as these people would believe.


http://www.nytimes.com/2011/07/13/world/asia/13briefs-Heatstroke.html

So, this is pretty tragic. By my math, an extra 20ish people are dying every 10 days in japan due to the reactor shutdown. By the end of summer, assuming the same rate, 180 people will die due to the conditions of japan after the reactor shutdown. Let us count the deaths of all nuclear accidents ever, in the history of the world (only counting direct deaths)

Chernobyl: 56
Mihama plant: 5
INL test rector: 3
Fukushima: 2
Tokaimura: 2
Jaslovske Bohunice: 2

for a grand total of 70. So the worse nuclear disaster in the history in the world could unfold in japan over this summer; leaving the reactors off. This is unacceptable, so I am glad to see they are finally putting some reactors online. This week alone, 10x more people died of stroke then in Fukushima, end the freaken madness.



Send this Article to a Friend



Separate multiple emails with a comma (,); limit 5 recipients






Your email has been sent successfully!

Manage this Video in Your Playlists

Beggar's Canyon