search results matching tag: Fission

» channel: learn

go advanced with your query
Search took 0.000 seconds

    Videos (25)     Sift Talk (0)     Blogs (1)     Comments (113)   

Seconds From Disaster : Meltdown at Chernobyl

GeeSussFreeK says...

Indeed, I am all for reactor simplification, the reactor I want to see constructed could theoretically be nearly completely made on a factory line then shipped and installed very simply. The molten salt reactor concept is just a bunch of pipes with a graphite core. Most of the Gen4 reactors have this goal, and while large construction projects do mean jobs, usually good jobs...they are also costs, and if we want China and India to adopt greener power systems, they need to be cheaper than coal.

http://www.youtube.com/watch?v=N2vzotsvvkw

I am going to sift this after I post, but it is a short look into reactors in general, and why the MSR and other potential Gen4 concepts could eliminate that huge capital and labor cost. And nearly completely eliminate radioactivity problems to the general public.

300 billion is actually not to much money when you get down to it. Each year, the global economy spends up to 10 trillion dollars on dino fuel technology. Considering the reliability of NPPs and the nearly 90% load rate over the course of many years...those costs are really really good! Typically speaking, when you consider the costs of decommissioning, waste transportation, nuclear generally ends up being about on par with coal...mostly because nuclear plants last so darn long, over 60 years for some of our gen2 plants in the US and still going strong! Compare that to the 150 billion or so Germany has spent on solar project to their total ACTUAL output and it is a very telling tail. Even more so when you look at total carbon emissions of Germany compared to France.

Waste is actually what made me anti-nuclear myself. My introduction to caring (negatively) about nuclear was the Fukushima Daiichi incident. But after learning more about that situation, I actually really started to appreciate nuclear more. No one died as a result of FD failure, the containment building stopped most of the most harmful radiation, and the stuff that did get out is the really mild stuff (stuff with the million year half lives). I don't want to downplay this, it is still a very serious industrial mess to clean up, but compared to the 20 thousand people who died in the Tsunami and the tons of fuels, trash and other crap that got souped around in Japan as a result, the old reactor help up respectably, and is a credit to the operators (all of whom are currently alive an well).

I had a common misconception about radioactivity, I thought something with a long half-life was bad because it was going to be radioactive for a long, long time. That is mostly wrong. What that means is it is going to be hardly radioactive for a long time, elements that are short lived are VERY radioactive, but disappear very fast. I don't want to mire you in most of the gritty details, but the fission products reactors produce don't last very long, most only hours, a fewer some decades, and only a few longer than that. Stuff that has billion year a billion year half life...well, you don't really need to worry about it at all, it just isn't that radioactive. Most of the worry is based around "transuranics". That is just fancy speak for "stuff heavier than uranium". This is the stuff like Plutonium and Curium ect. The great thing about modern, Gen4 reactors is they don't really make those things...the thorium reactor I like starts with thorium, which is a long, long way from making anything heavier than uranium (less than 1% theoretically possible). So micrograms per year...not really that much to worry about (there is also no way to really get that to go into the environment because we don't use pressure vessels, but I will leave that to Kirk to explain).

I don't want to make it sounds like there isn't any risk or anything, but the risks have been way overplayed by political interests and not technical ones. For instance, many of the exclusions zones for FD were way overblown, they were no more radioactive than my home in the mountains ...but that isn't want you heard in the news.

But I think I will leave it like that. Nuclear has a bunch of mystic joojoo around it. Don't take my work for it, please, give "bill gates nuclear" a google, or other "gen4 reactor" stuff a chance before you completely write off nuclear as a green option for the future. I personally think it will have a big role to play if we want to stem off CO2 production AND bring more people into a western quality of life. Thanks again for the back and forth.

Periodic Videos takes a look a the element Neptunium

GeeSussFreeK says...

As a kind of plug (sorry), thorium based reactors are really great sources of Pu238 creation via neptunium exposure to flux. Pu238 is unique among isotopes as to be both physically and radioactively hot, but that radiation relatively benign, weak alpha particles (but your still number one if my heart!). Very simple shielding is needed to keep electronics safe...and a layer of human skin is all the shielding you need for a human . Problem is, isotopes of plutonium are all chemically identical, in a normal uranium reactor, you get the full range of Pu (239 weapons, 240 spontaneous fissions, 241 smoke detector ect). This means you don't get that nice predictable alpha decay, you get a mix of everything...not so good, you need REALLY pure Pu238 to be useful in Radioisotope thermoelectric generator (RTG, the things that powers curiosity). Just one of the many overlooked but awesome things about radionuclides. </end shameless plug>

Seconds From Disaster : Meltdown at Chernobyl

GeeSussFreeK says...

@radx No problem on the short comment, I do the exact same thing

I find your question hard to address directly because it is a series of things I find kind of complexly contradictory. IE, market forces causing undesirable things, and the lack of market forces because of centralization causing undesirable things. Not to say you are believing in contradictions, but rather it is a complex set of issues that have to be addressed, In that, I was thinking all day how to address these, and decided on an a round about way, talking about neither, but rather the history and evolution as to why it is viewed the way you see it, and if those things are necessarily bad. This might be a bit long in the tooth, and I apologize up front for that.

Firstly, reactors are the second invention of nuclear. While a reactor type creation were the first demonstration of fission by humans (turns out there are natural fission reactors: Oklo in Gabon, Africa ), the first objective was, of course, weapons. Most of the early tech that was researched was aimed at "how to make a bomb, and fast". As a result, after the war was all said and done, those pieces of technology could most quickly be transitioned to reactor tech, even if more qualified pieces of technology were better suited. As a result, nearly all of Americas 104 (or so) reactors are based on light water pressure vessels, the result of mostly Admiral Rickover's decision to use them in the nuclear navy. This technological lock in made the big players bigger in the nuclear field, as they didn't have to do any heavy lifting on R&D, just sell lucrative fuel contracts.

This had some very toxic effects on the overall development of reactor technology. As a result of this lock-in, the NRC is predisposed to only approving technology the resembles 50 year old reactor technology. Most of the fleet is very old, and all might as well be called Rickover Reactors. Reactors which use solid fuel rods, control rods, water under pressure, ect, are approved; even though there are some other very good candidates for reactor R&D and deployment, it simply is beyond the NRCs desire to make those kinds of changes. These barriers to entry can't be understated, only the very rich could ever afford to attempt to approve a new reactor technology, like mutli-billionaire, and still might not get approved it it smells funny (thorium, what the hell is thorium!)! The result is current reactors use mostly the same innards but have larger requirements. Those requirements also change without notice and they are required to comply with more hast than any industry. So if you built a reactor to code, and the wire mesh standards changed mid construction, you have to comply, so tear down the wall and start over unless you can figure out some way to comply. This has had a multiplication effect on costs and construction times. So many times, complications can arise not because it was "over engineered", but that they have had to go super ad-hawk to make it all work due to changes mid construction. Frankly, it is pretty amazing what they have done with reactor technology to stretch it out this long. Even with the setbacks you mention, these rube goldbergian devices still manage to compete with coal in terms of its cost per Kwh, and blow away things like solar and wind on the carbon free front.

As to reactor size LWRs had to be big in the day because of various reasons, mostly licencing. Currently, there are no real ways to do small reactors because all licencing and regulatory framework assumes it is a 1GW power station. All the huge fees and regulatory framework established by these well engineered at the time, but now ancient marvels. So you need an evacuation plan that is X miles wide ( I think it is 10), even if your reactor is fractionally as large. In other words, there is nothing technically keeping reactors large. I actually would like to see them go more modular, self regulating, and at the point of need. This would simplify transmission greatly and build in a redundancy into the system. It would also potentially open up a huge market to a variety of different small, modular reactors. Currently, though, this is a pipe dream...but a dream well worth having and pushing for.

Also, reactors in the west are pretty safe, if you look at deaths per KWH, even figuring in the worst estimates of Chernobyl, nuclear is one of the best (Chernobyl isn't a western reactor). Even so, safety ratcheting in nuclear safety happens all the time, driving costs and complexity on very old systems up and up with only nominal gains. For instance, there are no computer control systems in a reactor. Each and every gauge is a specific type that is mandated by NRC edict or similar ones abroad (usually very archaic) . This creates a potential for counterfeiter parts and other actions considered foul by many. These edicts do little for safety, most safety comes from proper reactor design, and skillful operation of the plant managers. With plants so expensive, and general costs of power still very competitive, Managers would never want to damage the money output of nuclear reactors. They would very much like to make plant operations a combination of safe, smooth, and affordable. When one of those edges out the other, it tends to find abuses in the real world. If something gets to needlessly costly, managers start looking around for alternatives. Like the DHS, much of nuclear safety is nuclear safety theater...so to a certain extent, some of the abuses don't account for any real significant increase in risk. This isn't always the case, but it has to be evaluated case by case, and for the layperson, this isn't usually something that will be done.

This combination of unwillingness to invest in new reactor technology, higher demands from reactors in general, and a single minded focus on safety, (several NRC chairmen have been decidedly anti-nuclear, that is like having the internet czar hate broadband) have stilted true growth in nuclear technology. For instance, cars are not 100% safe. It is likely you will know someone that will die in a car wreak in the course of your life. This, however, doesn't cause cars to escalate that drastically in safety features or costs to implement features to drop the death rate to 0. Even though in the US, 10s of thousands die each year in cars, you will not see well meaning people call for arresting foam injection or titanium platted unobtanium body frames, mainly because safety isn't the only point of a car. A car, or a plane, or anything really, has a complicated set of benefits and defects that we have to make hard choices on...choices that don't necessarily have a correct answer. There is a benefit curve where excessive costs don't actually improve safety that much more. If everyone in the USA had to spend 10K more on a car for form injection systems that saved 100 lives in the course of a year, is that worth it? I don't have an answer there as a matter of fact, only opinion. And as the same matter of opinion on reactors, most of their cost, complication, and centralization have to do with the special way in which we treat reactors, not the technology itself. If there was a better regulatory framework, you would see (as we kind of are slowly in the industry despite these things) cheaper, easier to fabricate reactors which are safer by default. Designs that start on a fresh sheet of paper, with the latest and greatest in computer modeling (most current reactors were designed before computer simulations on the internals or externals was even a thing) and materials science. I am routing for the molten salt, thorium reactors, but there are a bunch of other generation4 reactors that are just begging to be built.

Right now, getting the NRC to approve a new reactor design takes millions of dollars, ensuring the big boy will stay around for awhile longer yet. And the regularly framework also ensures whatever reactor gets built, it is big, and that it will use solid fuel, and water coolant, and specific dials and gauges...ect. It would be like the FCC saying the exact innards of what a cellphone should be, it would be kind of maddening to cellphone manufacturers..and you most likely wouldn't have an iPhone in the way we have it today. NRC needs to change for any of the problems you mentioned to be resolved. That is a big obstacle, I am not going to lie, it is unlikely to change anytime soon. But I think the promise of carbon free energy with reliable base-load abilities can't be ignored in this green minded future we want to create.

Any rate, thanks for your feedback, hopefully, that wasn't overkill

Perpetual Motion Machine

GeeSussFreeK says...

>> ^Kalle:

One serious question that bothers me is.. why isnt it possible to use gravity as an energy source?
Would such a machine be a perpetual motion machine?


Gravity is REALLY weak. Like 36 orders of magnitude less than the electromagnetic force. 36 orders of magnitude is massive...larger the the total number of stars in the known universe. For instance, a fridge magnet is defeating the ENTIRE gravitational force of the earth AND the sun. Gravity makes for a great way to bind the macro-universe together, but it is shit as an energy source.

Also, gravity has only one polarity...and it doesn't turn off. So for the EM force, we have 2 poles that can be switched around via electrical current to make lots of different energy related things. But for gravity, you just have one ground state, and once you are there you need to input energy to get away from that ground state...no way around that. However, what has been done and is done in certain areas is to have a closed system where you apply energy at certain time and store that energy for later. The example most commonly used is in dams, where the will pump a large volume of water back up stream (potential energy) and store it (a gravity battery if you will) and release it as a later time when demand is high. This is always a loss based way to make energy; your going to spend more pumping it back up (heat loss and other losses including evaporation) than you will when you get it back...so it is just a way to cause demand shifting towards other hours with additional entropy.

You have 4 fundamental forces to draw energy from; and 3 of those are the only practical ones. Strong (nuclear) force, the EM force, and the gravitational force (the weak force is actually the force that powers the earths core, but isn't useful to use in power generation for a similar reason gravity isn't).

The EM force is what we use in internal combustion engines and electrical motors. Chemical reactions are rearrangements of the electron structures of molecules, which makes gasoline engines possible via liquid to gas expansion pressures. Generators deal with EM fields, polarity and current which is what drives thermal reactors like coal or can drive a car with a motor via conversation of stored electrical energy(just a backwards generator). Nuclear reactors deal with the strong (nuclear) force, and combine that with kinetic/thermodynamic forces of same flavor as coal and other thermal plants.

Even gravity isn't perpetual, the orbits of ALL celestial bodies are unstable. Gravity is thought and reasonably well satisfied to travel in waves. These waves cause turbulence in what would seem calm orbits, slowly breaking them down over time...drawing them closer and closer together. Eventually, all orbits will cause ejection or collision.


As to what energy is best, I personally believe in the power of the strong force, as does the sun . When you are talking about the 4 forces and their ability to make energy for us, the strong force is 6 orders of magnitude greater than other chemical reactions we can make. The EM force is not to much weaker than the strong force, but the practical application of chemical reactions limits us to the electron cloud, making fuels for chemical reactions less energetic by a million to a billion times vs strong force fuels. Now, only fission has been shown to work for energy production currently, but I doubt that will be true forever. If you want LOTS of energy without much waste, you want strong force energy, period. That and the weak force are the 2 prime movers of sustained life on this planet. While the chemistry is what is hard at work DOING life, the strong and weak force provide the energy to sustain that chemistry. Without it, there are no winds, there is no heat in the sky nor from the core, no EM shield from that core. Just a cold, lifeless hunk of metals and gases floating in the weak gravitational force.

Sorry for the rant, energy is my most favorite current subject



(edit, corrected some typos and bad grammar)

ReverendTed (Member Profile)

GeeSussFreeK says...

Safe nuclear refers to many different new gen4 reactor units that rely on passive safety instead of engineered safety. The real difference comes with a slight bit of understanding of how nuclear tech works now, and why that isn't optimal.

Let us first consider this, even with current nuclear technology, the amount of people that have died as a direct and indirect result of nuclear is very low per unit energy produced. The only rival is big hydro, even wind and solar have a great deal of risk compared to nuclear as we do it and have done it for years. The main difference is when a nuclear plant fails, everyone hears about it...but when a oil pipeline explodes and kills dozens, or solar panel installers fall off a roof or get electrocuted and dies...it just isn't as interesting.

Pound per pound nuclear is already statistically very safe, but that isn't really what we are talking about, we are talking about what makes them more unsafe compared to new nuclear techs. Well, that has to do with how normal nukes work. So, firstly, normal reactor tech uses solid fuel rods. It isn't a "metal" either, it is uranium dioxide, has the same physical characteristics as ceramic pots you buy in a store. When the fuel fissions, the uranium is transmuted into other, lighter, elements some of which are gases. Over time, these non-fissile elements damage the fuel rod to the point where it can no longer sustain fission and need to be replaced. At this point, they have only burned about 4% of the uranium content, but they are all "used up". So while there are some highly radioactive fission products contained in the fuel rods, the vast majority is just normal uranium, and that isn't very radioactive (you could eat it and not really suffer any radiation effects, now chemical toxicity is a different matter). The vast majority of nuclear waste, as a result of this way of burning uranium, generates huge volumes of waste products that aren't really waste products, just normal uranium.

But this isn't what makes light water reactors unsafe compared to other designs. It is all about the water. Normal reactors use water to both cool the core, extract the heat, and moderate the neutrons to sustain the fission reaction. Water boils at 100c which is far to low a temperature to run a thermal reactor on, you need much higher temps to get power. As a result, nuclear reactors use highly pressurized water to keep it liquid. The pressure is an amazingly high 2200psi or so! This is where the real problem comes in. If pressure is lost catastrophically, the chance to release radioactivity into the environment increases. This is further complicated by the lack of water then cooling the core. Without water, the fission chain reaction that generates the main source of heat in the reactor shuts down, however, the radioactive fission products contained in the fuel rods are very unstable and generate lots of heat. So much heat over time, they end up causing the rods to melt if they aren't supplied with water. This is the "melt down" you always hear about. If you start then spraying water on them after they melt down, it caries away some of those highly radioactive fission products with the steam. This is what happened in Chernobyl, there was also a human element that overdid all their safety equipment, but that just goes to show you the worst case.

The same thing didn't happen in Fukushima. What happened in Fukushima is that coolant was lost to the core and they started to melt down. The tubes which contain the uranium are made from zirconium. At high temps, water and zirconium react to form hydrogen gas. Now modern reactor buildings are designed to trap gases, usually steam, in the event of a reactor breach. In the case of hydrogen, that gas builds up till a spark of some kind happens and causes an explosion. These are the explosions that occurred at Fukushima. Both of the major failures and dangers of current reactors deal with the high pressure water; but water isn't needed to make a reactor run, just this type of reactor.

The fact that reactors have radioactive materials in them isn't really unsafe itself. What is unsafe is reactor designs that create a pressure to push that radioactivity into other areas. A electroplating plant, for example, uses concentrated acids along with high voltage electricity in their fabrication processes. It "sounds" dangerous, and it is in a certain sense, but it is a manageable danger that will most likely only have very localized effects in the event of a catastrophic event. This is due mainly to the fact that there are no forces driving those toxic chemical elements into the surrounding areas...they are just acid baths. The same goes for nuclear materials, they aren't more or less dangerus than gasoline (gas go boom!), if handled properly.

I think one of the best reactor designs in terms of both safety and efficiency are the molten salt reactors. They don't use water as a coolant, and as a result operate at normal preasures. The fuel and coolant is a liquid lithium, fluoride, and beryllium salt instead of water, and the initial fuel is thorium instead of uranium. Since it is a liquid instead of a solid, you can do all sorts of neat things with it, most notably, in case of an emergency, you can just dump all the fuel into a storage tank that is passively cooled then pump it back to the reactor once the issue is resolved. It is a safety feature that doesn't require much engineering, you are just using the ever constant force of gravity. This is what is known as passive safety, it isn't something you have to do, it is something that happens automatically. So in many cases, what they designed is a freeze plug that is being cooled. If that fails for any reason, and you desire a shutdown, the freeze plug melts and the entire contents of the reactor are drained into the tanks and fission stops (fission needs a certain geometry to happen).

So while the reactor will still be as dangerous as any other industrial machine would be...like a blast furnace, it wouldn't pose any threat to the surrounding area. This is boosted by the fact that even if you lost containment AND you had a ruptured emergency storage tank, these liquid salts solidify at temps below 400c, so while they are liquid in the reactor, they quickly solidify outside of it. And another great benefit is they are remarkably stable. Air and water don't really leach anything from them, fluoride and lithium are just so happy binding with things, they don't let go!

The fuel burn up is also really great. You burn up 90% of what you put in, and if you try hard, you can burn up to 99%. So, comparing them to "clean coal" doesn't really give new reactor tech its fair shake. The tech we use was actually sort of denounced by the person who made them, Alvin Weinberg, and he advocated the molten salt reactor instead. I could babble on about this for ages, but I think Kirk Sorensen explains that better than I could...hell most likely the bulk of what I said is said better by him



http://www.youtube.com/watch?v=N2vzotsvvkw

But the real question is why. Why use nuclear and not solar, for instance?

http://en.wikipedia.org/wiki/Energy_density

This is the answer. The power of the atom is a MILLION times more dense that fossil fuels...a million! It is a number that is beyond what we can normal grasp as people. Right now, current reactors harness less that 1% of that power because of their reactor design and fuel choice.

And unfortunately, renewables just cost to darn much for how much energy they contribute. In that, they also use WAY more resources to make per unit energy produced. So wind, for example, uses 10x more steal per unit energy contributed than other technologies. It is because renewables is more like energy farming.

http://videosift.com/video/TEDxWarwick-Physics-Constrain-Sustainable-Energy-Options


This is a really great video on that maths behind what makes renewables less than attractive for many countries. But to rap it up, finally, the real benefit is that cheap, clean power is what helps makes nations great. There is an inexorable link with access to energy and financial well being. Poor nations burn coal to try and bridge that gap, but that has a huge health toll. Renewables are way to costly for them per unit energy, they really need other answers. New nuclear could be just that, because it can be made nearly completely safe, very cheap to operate, and easier to manufacture (this means very cheap compared to today's reactors as they are basically huge pressure vessels). If you watch a couple of videos from Kirk and have more questions or problems, let me know, as you can see, I love talking about this stuff Sorry if I gabbed your ear off, but this is the stuff I am going back to school for because I do believe it will change the world. It is the closest thing to free energy we are going to get in the next 20 years.

In reply to this comment by ReverendTed:
Just stumbled onto your profile page and noticed an exchange you had with dag a few months back.
What constitutes "safe nuclear"? Is that a specific type or category of nuclear power?
Without context (which I'm sure I could obtain elsewise with a simple Google search, but I'd rather just ask), it sounds like "clean coal".

NASA | Dynamic Earth

GeeSussFreeK says...

What is particularly interesting, and new science to me is that the majority of the heat that keeps the core molten is just decay heat from Thorium, Uranium, and Potassium. Only 20% of the heat that drives the internal dynamo is believed to be primordial, most is from the decay of mainly these elements. This, coupled with our crust layer which forms a heat retaining blanket, has enabled the heat of our core to live much longer than otherwise. Predictions for core solidification without radioactive decay is on the order of a couple hundred million years. Every major thermodynamic system on the earth is powered via some form of nuclear; be it fission (well, decay, which isn't usually called fission) keeping the core molten, or fusion keeping the sun burning...we owe a lot to the strong and weak forces!

What Keeps Nuclear Weapons from Proliferating

GeeSussFreeK says...

To continue this lesson, it is important to note that most bomb technology doesn't use enriched uranium alone. The other key material compound is plutonium. For all intents and purposes, all plutonium is man made (with only traces of 244 found in nature, of which is completely unsuitable for weapons..Pu244). Plutonium is usually needed in a bomb because of its much lower critical mass. This lower mass makes bomb fabrication easier, but that creation of plutonium is by no means trivial.

You need huge facilities, dedicated to the sole purpose of uranium exposure. Like the video mentions, normal uranium is mostly U238, this junk gains value in the creation of plutonium. Weapons grade plutonium is a special isotope of plutonium, Pu239. This need is very specific, the different isotopes of Pu can have so very serious implications for bombs. Lets go over them as we as we go over how uranium is exposed to make this very special isotope

First, we start off with U238...the fuel stock. This isotope is bombarded with neutrons. These neutrons are occasionally absorbed by the uranium, turning it into U239. U239 is highly unstable, and quickly decays (in 23.45 minutes) to neptunium 239. This will in turn, decay into Pu239 (in about 2.3 days). Sounds easy, right? Not exactly, neutron absorption isn't something you can control with ease. What I mean is, there is little to stop our Neptunium or Plutonium from absorbing neutrons any more or less than the Uranium (in fact, their absorption cross sections are typically much larger...they are more hungry of neutrons than uranium in other words). When this undesired absorption happens, the neptunium and plutonium eventually becomes Pu240...and that is a big problem.

Plutonium Pu240 is HIGHLY undesirable in a bomb. Pu240 is a medium lived isotope of Plutonium, meaning it decays pretty quick, but it is HOW it decays that is the problem. Pu240 often decays by spontaneous fission. Having spontaneous fission in your fission bomb is just as undesirable as it sounds. Firstly, all even number isotopes are poor fission candidates, so for every even number isotope in your bomb, that lowers the bombs over all yield (because they prefer to fission themselves, and for very little return energy). This is further complicated by high densities of Pu240 causing your bomb to prematurely detonate, ya...bad news. The levels of Pu240 represent yet another challenge in the level of heat they generate from their rather quick decay, though, considering the previous 2 issues, this one is less problematic, though still troublesome. And lastly, there is nothing stopping our Pu240 from absorbing yet another neutron causing yet another isotope of plutonium to arises, namely Pu241.

Pu241, being an odd numbered isotope heavier than lead makes it a rather good subject to undergo fission. It doesn't have the same set of problems as Pu241, but it rapidly decays (14 years) into Americium 241, which is not fissile, and has a halflife of 432 years. These factors add large amounts of heat to the bomb, and reduce overall yield, as well as detract from critical mass.

The solution for this is a very low tech, time consuming, laborious process with produces tons of waste and very little plutonium. One has to expose small blocks of uranium to neutrons under a very brief window. The brief window decreases the chances of undesired neutron absorption and negates much (but not all!) of the heavier forms of plutonium being created. After exposure, they are left to decay, then after a few months, are chemically processed to remove any plutonium and other undesirables (this is also very very hard, and I won't even go into how this is done), then re-exposed. This yields gram(s) at a time. To make a weapons, you need 10 killos, at least...for one bomb...if everything went great. This means you need HUGE facilities, HUGE staff, and HUGE uranium resources. Your facility would be obvious and serve no other purpose, use tons of energy, and pile up radioactive waste of the kind no one wants, heavier than uranium wastes...the worse of the worst. No such facility could exist alongside some traditional uranium facility and not be noticed, period, end of story, done.

We haven't even covered bomb making problems, of which killed some of our top minds in our own bomb program. A set of incidents revolving around a specific bomb type, after taking 2 lives, was dubbed the Demon core. These are the reasons over half the budget of the DOD gets soaked up in nuclear weapons, and we haven't even covered some of the more important aspects (like delivery systems, one simply doesn't walk into Mordor). Nuclear weapons are hugely expensive, hugely conspicuous, require massive facilities and require a level of sophistication that is completely absent from the training of reactor nuclear scientists.

Reactor research and materials are orders of magnitude different from weapons grade materials and research. No bomb in history has EVER been made from reactor grade plutonium because the levels of Pu240 and Pu241 (and we haven't even covered Pu238!) are blisteringly high, way to high for weapons. Isotopic separation for Pu would be even more costly than uranium because of their mass similarities (compared to U235 and U238) and need a different set of enrichment facilities specially tailored to plutonium enrichment, of which all the people who knew something about that are Russian and American, and most likely dead or work classified to the highest degree.

The problem of nuclear weapons via reactor development is all a game to ratchet up the fear machine to get a particular end. It isn't a technical problem, it is a political problem. In the end, though, emerging technology could make enrichment easier anyway, so many of the issues I mentioned might eventually fall to the wayside (not within the next 10 years I imagine; for interested parties, google laser enrichment...coming to a world near you, but not exactly tomorrow, it's awesome stuff though). Eventually, the US is going to have to get used to the idea of more and more nations owning the bomb...but that issue is completely unrelated to reactor design and research. Reactors and nuclear weapons share about as much in common as cars and space shuttles...trying to link them as a dual proliferation argument is a political game and doesn't map on to them technologically.



I should note that I am not yet a nuclear engineer, but I did stay at a holiday inn express.

Periodic Table Of Videos - Nuclear Radioactive Laboratory

GeeSussFreeK says...

The actinides are, generally, "safe" to handle, like those Uranium Oxide pellets. You are more likely to damage the pellet with your nasty human oils than the uranium will you...unless you eat the whole thing, but its chemical toxicity will do you more harm that its radioactive toxicity. Uranium oxide just isn't that radioactive, that is why none of the containers or work areas were shielded in this lab.



Now, if they were dealing with a "hot" substance, one that has hard gammas (like when you do MOX fuel recycling), you have to take even greater precautions because then the radioactive problems really do start to show their heads. Not only will it damage your cells faster than they can repair, but it can start to take out unshielded electronics. This is generally only true for fission products, and a few actinides like protactinium which is highly radioactive AND chemically toxic, and generally only man-made (normal occurrences are less than a few parts per trillion in the crust).



These complications are pretty good generalization to why normal LWRs are not the best way to do nuclear, they just generate far to much waste compared to alternatives. You burn less than 1% of the mined uranium in current reactor tech and fuel cycle choices. With a thorium cycle in a molten salt reactor, you can burn greater than 90%, pushing up to 99% or higher if you try real hard. This means you generate an order(s) of magnitude less waste, and that waste generally is safe after about 300 years (radiation is about the same as naturally occurring radiation). There are also other alternates that use uranium in a faster spectrum that perform better than current tech.



A second age of the atom is fast approaching. Unfortunately, those great pioneers which made this industry in the shadow of "the bomb" failed to realize the full potential of e=mc^2. If nuclear power was developed along side the Apollo instead of the Manhattan project, we might already be in that future, alas...it was not to be.



Radiation is fascinating though! I used to believe what I read in the fear news about any radiation leading to death..turns out that isn't so true after all. The planet is a far more radioactive place then you normally consider, and FAR more radioactive when our primordial ancestors evolved. In fact, there are many people living today in what are dubbed High Background Radiation Areas that seem to suffer no ill effect, and some suggest, have lower rates of cancer than other groups. More studies need to be done, but initial findings fly in the face of the notion of radiation I grew up with (that it all is bad and it all kills you!) Some have even suggested that the creator of the entire model used for evaluating radiation risk knowingly lied about it. The entire basis for today's evaluation of radiological risk is evaluated by Muller's findings as supported by the National Academy of Sciences’ of the time. And in fact, might just be based in fear instead of evidence.



Perhaps ancient man went through the same struggles as he tried to adopt fire, some impassioned move against the dangers of fire prevented some groups from using fire and advancing their way of life. Fire, though, allowed the groups that adopted it to improve their life dramatically. The energy released from a fission event is over a million times more energy rich than any energy tech we currently use, imagine what that could mean for mankind. Fusion is over 4 times that of fission (but much harder), and antimatter over 2000x that of fission (and MUCH MUCH harder). Yes, the age of the atom has only just begun, and who knows were man will be a result? Don't settle for solar dandruff, the power of the atom will reign supreme.

Bill Gates on Nuclear and renewables

Yogi says...

>> ^GeeSussFreeK:

>> ^Yogi:
>> ^GeeSussFreeK:
At any rate, don't take my word for it, there is lots of data out there to look over.


No there isn't because we haven't had enough reactors for a long period of time to get a large enough date sample. The only reason Chernoble wasn't as bad as it could be here was because it wasn't placed in Downtown LA. Look I get it, it's cleaner than coal...it's not safe, don't try to make it sound safe. Japan proved it's not safe...lets put a few in tornado alley and see what happens...or maybe some on the San Andreas Fault.
Whatever data that's out there it's not a big enough sample size...it's like asking 100 people to represent that nations opinions. No Nuclear Power until we at least kill half the population.

I don't think you realize how much power nuclear provides. At over 61,032 MW, and nearly 450 plants, there is a ton of data on how safe and clean they are. Japan proved that even in a case of a nuclear meltdown from a Tsunami that killed over 10k people, 3 explosions, and flooding...and only ONE person died (from a heart attack), that nuclear reactors are one of the great engineering examples in the world today. Not only that, but that reactor is over 40 years old, a gen 1 reactor. Many modern reactors not longer use regular water, or water at all as a coolant, so are much much safer. But even then, more people have died falling off roof tops installing solar panels than even in Fukushima. I think you have made up your mind already, but I challenge you to examine your opinion and see if it hasn't been formed by fear factor media hype instead of facts and evidence. I know I had similar to your opinion not to long ago. The evidence is pretty clear, nuclear power has the best track record of any power source in the history of man in terms of production and safety. There are still some bad reactors out there, but take that into consideration, there are 1000 different ways to do nuclear energy, just because one or 2 reactors designs are bad doesn't make the whole lot bad. That is like saying since Ford made a bad car once, not only are all Fords bad, but all cars, it is a reaction that is based more in emotion than evidence, and the evidence is that pound for pound, fission is the safest and cleanest energy around, even in spite of running on 50 year old tech ( you should see the stuff we have now). Think of how different cars and planes have gotten in 50 years, how much safer, how much more reliable!?


I'll be honest...I don't give a shit I just want you to shut up.

Bill Gates on Nuclear and renewables

GeeSussFreeK says...

>> ^Yogi:

>> ^GeeSussFreeK:
At any rate, don't take my word for it, there is lots of data out there to look over.


No there isn't because we haven't had enough reactors for a long period of time to get a large enough date sample. The only reason Chernoble wasn't as bad as it could be here was because it wasn't placed in Downtown LA. Look I get it, it's cleaner than coal...it's not safe, don't try to make it sound safe. Japan proved it's not safe...lets put a few in tornado alley and see what happens...or maybe some on the San Andreas Fault.
Whatever data that's out there it's not a big enough sample size...it's like asking 100 people to represent that nations opinions. No Nuclear Power until we at least kill half the population.


I don't think you realize how much power nuclear provides. At over 61,032 MW, and nearly 450 plants, there is a ton of data on how safe and clean they are. Japan proved that even in a case of a nuclear meltdown from a Tsunami that killed over 10k people, 3 explosions, and flooding...and only ONE person died (from a heart attack), that nuclear reactors are one of the great engineering examples in the world today. Not only that, but that reactor is over 40 years old, a gen 1 reactor. Many modern reactors not longer use regular water, or water at all as a coolant, so are much much safer. But even then, more people have died falling off roof tops installing solar panels than even in Fukushima. I think you have made up your mind already, but I challenge you to examine your opinion and see if it hasn't been formed by fear factor media hype instead of facts and evidence. I know I had similar to your opinion not to long ago. The evidence is pretty clear, nuclear power has the best track record of any power source in the history of man in terms of production and safety. There are still some bad reactors out there, but take that into consideration, there are 1000 different ways to do nuclear energy, just because one or 2 reactors designs are bad doesn't make the whole lot bad. That is like saying since Ford made a bad car once, not only are all Fords bad, but all cars, it is a reaction that is based more in emotion than evidence, and the evidence is that pound for pound, fission is the safest and cleanest energy around, even in spite of running on 50 year old tech ( you should see the stuff we have now). Think of how different cars and planes have gotten in 50 years, how much safer, how much more reliable!?

Bill Gates on Nuclear and renewables

GeeSussFreeK says...

What about reactors that can't melt down? What about Ford Pintos that exploded when you hit them from the rear, that isn't a story of why all cars are dangerous, only Ford Pintos. What about a plane lands on a city and kills thousands, or the super dome and 10s of thousands? What if what if what if. 50 million people is a little showing of being irrationality scared. Even in the worst designed reactor incident in history, it wasn't as bad as that. If you looked closely, as well, the chart shows that nuclear has historically been safer that solar and wind (and hydro if you include the Banqiao Dam incident).

With that said, I do wish to see old light water reactor technology phased out and new, walk away safe reactors phased in. Engineered safety is less preferred than intrinsic safety that many of the new reactors have. Also, lets not forget, most of the navy is nuclear...meaning they feel safe enough to be in war time situations with current reactors, so engineered safety can indeed be very safe.

I have irrational fears as well, I hate to fly even though I know statistically it is safer than driving. I would suggest that your fear of nuclear is of the same nature. The only way you can kill millions of people with current or future nuclear technology is with bombs, not reactors. The only way reactors can "explode" is from a steam explosion or a hydrogen explosion...so about as bad as a fuel plant exploding, most likely several orders of magnitude less. IE, reactors explode chemically, not via fission, making no more or less dangerous that that other kinds of tech, with the exception of the fission byproducts. The good thing about most of the new nuclear tech is the fuel burn up rates are very very high, meaning there is less fuel involved in most cases.

At any rate, don't take my word for it, there is lots of data out there to look over. For my part, I think nuclear is the cleanest, safest bet for energy needs. I submit that nuclear is only scary because of it was first developed as a fearsome weapon. But the even more fearsome weapon are thermonuclear weapons, which are actually fusion/fission hybrid bombs. I would imagine for whatever reason you aren't super scared of fusion, and would wager that if thermonuclear bombs were called fusion bombs, the world at large would have a different mindset towards it...irrationally.

But I leave you with the facts, nuclear has been the leading sources of clean power which has also caused the least amount of deaths than other technologies. There are many factors in that, including massively engineered safety that continues to improve, as well as highly trained crews that watch over them. Coal miners die all the time, pipelines explode, oil platforms explode, people fall off roofs, or fall off wind farm towers, or get electrocuted...but none of these deaths cause the downfall of those technologies. Nuclear still has more drama in our minds, so plays out much differently when something goes wrong, which isn't very often ( 6 fatal occurrences since 1961) .

>> ^Yogi:

>> ^GeeSussFreeK:
http://nextbigfuture.com/2011/03/deaths-per-twh-by-energy-source.html


I'm sorry are you comparing death rates between Coal and Nuclear Reactors? What if there's a meltdown or a terrorist attack and suddenly there's 50,000,000 people dead? It only takes one reactor outside of LA to do catastrophic damage you cannot compare the two NOW when we don't have a Fuckton of Reactors near population centers.
Comparing the two at this point in time is just ridiculous, the numbers are so skewed it's not even funny.

TED: The missing link to renewable energy

curiousity says...

>> ^GeeSussFreeK:

My point still holds that to hold any descent amount of energy that they are producing when no one is using power requires a HUGE number of these things. This tech isn't really new, they have been using it for years, this is just a new formulation, tech has been around since the 60s. The problem is the same problem now as then, chemical energy density just isn't that great. If you are trying to use it as some type of regulator, fine then, but that isn't what he is talking about. He is talking about storing up volumes of energy that wind and solar make when people don't want it, then inject that to the grid when it needs it. You need this because renewables are unpredictable. To store any real volume of energy worth caring about, you need 10s of thousands of these. For comparison, a single 1gigawatt power station (a pretty standard size in the industry of power generation) generates enough energy for hundreds of thousands of people, even in the shade.
I'm not trying to be a negative nancy, I like advances as much as the next guy, I just don't like all this investment in renewables over real grid solutions. The energy density of wind and solar makes them impractical solutions for primary load generation, but that is all we hear about in today's energy topics. It is like talking about saving pennies when your trillion in debt. It bugs me, so perhaps I am harping to much on this
>> ^curiousity:
>> ^GeeSussFreeK:
I don't think this is even close to grid level storage, at all. For instance, in Austin this year, between 4 and 5 p.m we consumed 66,867 megawatts. For those who are counting, that is over 33k of these things. Lets talk about storing them. Each container would be 40x8x8 feet; or 2,560 cubic feet. Lets just say we need 1 hours worthish of power, so 33k of them. That is 84 million cubic feet! For reference, the Empire State building is 37 million cubic feet. So for one hour of power here in Austin, we would need about 3 Empire state buildings of liquid metal batteries, unless my math is wrong (someone check me!) If my math is right, this isn't even close to a grid level storage ability. Your going to need density on the order of 1000 better to even be reasonably sized at 84k cubic feet (about the size of a large factory, or concert hall).
The only reason to try and investigate battery grid backup is to address the issue of wind and solar being so energy inefficient, and volatile. It is a better solution to just have them generate secondary power and let new fission based technologies take hold; best of both worlds. Then again, I have a personal bias

I thought that he had clearly made the point that this investigation into grid battery technology was for the purpose of making those intermittent renewable resources reliable to the point that they could more easily attach to the grid. You are arguing that this isn't suitable for a purpose that he isn't designing it for.



Ahh... well thank you for clearing up what he really meant beyond what he said. I guess I only had to go off of what he said.

TED: The missing link to renewable energy

GeeSussFreeK says...

My point still holds that to hold any descent amount of energy that they are producing when no one is using power requires a HUGE number of these things. This tech isn't really new, they have been using it for years, this is just a new formulation, tech has been around since the 60s. The problem is the same problem now as then, chemical energy density just isn't that great. If you are trying to use it as some type of regulator, fine then, but that isn't what he is talking about. He is talking about storing up volumes of energy that wind and solar make when people don't want it, then inject that to the grid when it needs it. You need this because renewables are unpredictable. To store any real volume of energy worth caring about, you need 10s of thousands of these. For comparison, a single 1gigawatt power station (a pretty standard size in the industry of power generation) generates enough energy for hundreds of thousands of people, even in the shade.

I'm not trying to be a negative nancy, I like advances as much as the next guy, I just don't like all this investment in renewables over real grid solutions. The energy density of wind and solar makes them impractical solutions for primary load generation, but that is all we hear about in today's energy topics. It is like talking about saving pennies when your trillion in debt. It bugs me, so perhaps I am harping to much on this
>> ^curiousity:

>> ^GeeSussFreeK:
I don't think this is even close to grid level storage, at all. For instance, in Austin this year, between 4 and 5 p.m we consumed 66,867 megawatts. For those who are counting, that is over 33k of these things. Lets talk about storing them. Each container would be 40x8x8 feet; or 2,560 cubic feet. Lets just say we need 1 hours worthish of power, so 33k of them. That is 84 million cubic feet! For reference, the Empire State building is 37 million cubic feet. So for one hour of power here in Austin, we would need about 3 Empire state buildings of liquid metal batteries, unless my math is wrong (someone check me!) If my math is right, this isn't even close to a grid level storage ability. Your going to need density on the order of 1000 better to even be reasonably sized at 84k cubic feet (about the size of a large factory, or concert hall).
The only reason to try and investigate battery grid backup is to address the issue of wind and solar being so energy inefficient, and volatile. It is a better solution to just have them generate secondary power and let new fission based technologies take hold; best of both worlds. Then again, I have a personal bias

I thought that he had clearly made the point that this investigation into grid battery technology was for the purpose of making those intermittent renewable resources reliable to the point that they could more easily attach to the grid. You are arguing that this isn't suitable for a purpose that he isn't designing it for.

TED: The missing link to renewable energy

cosmovitelli says...

Yeah i think they go between the intermittent source and the grid and stabilize the flow. Like a big slow motion capacitor.

>> ^curiousity:

>> ^GeeSussFreeK:
I don't think this is even close to grid level storage, at all. For instance, in Austin this year, between 4 and 5 p.m we consumed 66,867 megawatts. For those who are counting, that is over 33k of these things. Lets talk about storing them. Each container would be 40x8x8 feet; or 2,560 cubic feet. Lets just say we need 1 hours worthish of power, so 33k of them. That is 84 million cubic feet! For reference, the Empire State building is 37 million cubic feet. So for one hour of power here in Austin, we would need about 3 Empire state buildings of liquid metal batteries, unless my math is wrong (someone check me!) If my math is right, this isn't even close to a grid level storage ability. Your going to need density on the order of 1000 better to even be reasonably sized at 84k cubic feet (about the size of a large factory, or concert hall).
The only reason to try and investigate battery grid backup is to address the issue of wind and solar being so energy inefficient, and volatile. It is a better solution to just have them generate secondary power and let new fission based technologies take hold; best of both worlds. Then again, I have a personal bias

I thought that he had clearly made the point that this investigation into grid battery technology was for the purpose of making those intermittent renewable resources reliable to the point that they could more easily attach to the grid. You are arguing that this isn't suitable for a purpose that he isn't designing it for.

TED: The missing link to renewable energy

curiousity says...

>> ^GeeSussFreeK:

I don't think this is even close to grid level storage, at all. For instance, in Austin this year, between 4 and 5 p.m we consumed 66,867 megawatts. For those who are counting, that is over 33k of these things. Lets talk about storing them. Each container would be 40x8x8 feet; or 2,560 cubic feet. Lets just say we need 1 hours worthish of power, so 33k of them. That is 84 million cubic feet! For reference, the Empire State building is 37 million cubic feet. So for one hour of power here in Austin, we would need about 3 Empire state buildings of liquid metal batteries, unless my math is wrong (someone check me!) If my math is right, this isn't even close to a grid level storage ability. Your going to need density on the order of 1000 better to even be reasonably sized at 84k cubic feet (about the size of a large factory, or concert hall).
The only reason to try and investigate battery grid backup is to address the issue of wind and solar being so energy inefficient, and volatile. It is a better solution to just have them generate secondary power and let new fission based technologies take hold; best of both worlds. Then again, I have a personal bias


I thought that he had clearly made the point that this investigation into grid battery technology was for the purpose of making those intermittent renewable resources reliable to the point that they could more easily attach to the grid. You are arguing that this isn't suitable for a purpose that he isn't designing it for.



Send this Article to a Friend



Separate multiple emails with a comma (,); limit 5 recipients






Your email has been sent successfully!

Manage this Video in Your Playlists

Beggar's Canyon